

Solving a Patterned Polyomino Packing Puzzle
Algorithmic Study

Prateeksha Singh

November 22, 2019

Abstract

We present an efficient way to solve a color-constrained assorted multi-sized polyomino piece packing puzzle

(named the Dr. Wood Kaleidoscope Classic): A 8 x 8 packing puzzle with numerous possible packings, but which

enables wants a specific pattern. arranging a packing that matches a given pattern.

The python implementation of the algorithm can be found at GitHub: ​www.github.com/pratu16x7/kaleidoscope

Keywords:​ packing puzzle, edge matching, backtracking, polyominoes

Introduction

Packing Puzzles

Packing puzzles have intrigued folk through

decades, both to recreational mathematicians and

programming enthusiasts. The Pentomino packing

puzzle is the most popular, which requires packing

all the 12 pentomino shapes into different sized

rectangles. They are a special kind of polyform;

Pentominoes is an example of packing with

polyominoes, the simplest polyform packing,

involving packing together a group of polyominoes

which may be same or different in size.

Fig 1.0: A solution to the Pentominoes puzzle

The Kaleidoscope Classic

The puzzle consists of an 8x8 board, over which 18

polyomino pieces are to be arranged: 1 octomino,

10 tetrominoes, 4 triominoes, 1 domino, 2

monominoes. Each piece is colored on both sides

and can be chosen to be placed on either. No two

pieces are alike. A pattern is a particular

arrangement of the pieces, placed with either side

chosen, on the 64-celled board, shown without the

piece placement. A solution to the pattern is a board

that shows a possible packing that the pieces can

be arranged for the pattern.

As the pieces set is built to be easy to pack to fit the

board in many ways, the challenge is to pack them

in specific ways. There are over 200 patterns

possible, each having as many as millions or as little

as a single solution. It is Dr Wood’s first widespread

creation and a winner of the Puzzle of the Year by

the Australian Games Association in 2004.

1

http://www.github.com/pratu16x7/kaleidoscope

Fig 1.1: The Kaleidoscope Classic: The 8 x 8 board and 18 polyomino pieces. No two pieces are alike.

Fig 1.2: Some puzzle patterns and their possible solutions

2

Problem definition

“​For a given pattern of an 8x8 grid, and the given 18

pieces colored both sides, find a placement of each

of the pieces such that the pattern is satisfied.”

Terms used:

● Board

● Pattern (any grid)

● Cell edge info

● Piece

● Y, X coordinate system of a board

● A solution move: piece, orientation, coord

We propose an algorithm to account for the

difference in size and colors of the pieces and take

advantage of them to make a typical edge matching

algorithm fast.

Blue and Yellow sides are beyond the scope for this

analysis but are presented in the ‘Future

Improvements’ section.

Observations & Motivation

The context: Perceived Human difficulty

Fig: The checkerboard, the easiest pattern to solve,

with billions of solutions

Conventionally, the checkerboard pattern, with

alternating colors is considered the easiest to solve.

Partly because the board pieces have Conversely,

any board that is not the checkerboard is considered

harder: the more features a board has, the harder it

is to solve. However, we present some observations

that show that this is not the case.

The solution as an increase in cell edges

Looking closely at a solution of a given pattern, we

observe that the placements of all the 18 pieces

give us additional information apart from the cell

colors: edges. In the same vein, a problem pattern is

represented with zero edges, and with every piece

placement, we add to the edge information and

move closer to the solution (maximum edges).

Zero edges 65 edges

Fig: Increase in edges from pattern to solution

(excluding the 32 trivial border edges)

Trivial edges

In any pattern, the borders of the board are implicitly

edges, which serve as a starting point to place the

pieces.

Fig: . The 32 implicit edges in any pattern

Adding to Trivial edges (color adjacency edges)

We observe that all pieces have alternating colors,

and hence continuous color regions (same-colored

adjacent cells) indicate the presence of a divide,

across which two pieces have been placed.

Fig: (small window) implied edges from same

colored adjacent cells

3

Fig: 1. (small window) implied edges from same

colored adjacent cells

Checkerboard as a base pattern

And any attempt to tweak the checkerboard pattern

introduces ​some ​secondary adjacent color edges.

[fig]Row 1: Incr in features,Row 2: Increase in edges

Fig 2.1: Edge info in any board different from

checkerboard pattern

And now combining all of the above, the following

follows,

1. a solution is progression to more edge info

2. The checkerboard is easiest to solve

(billions of solutions)

3. In any pattern that is not a checkerboard,

there is bound to be some non-trivial edge

info

=> it should be relatively easier to solve with built in

info. Or at the very least, there should be a way to

do it.

The least featureful checkerboard, easiest to solve.

Any intent to make a different pattern will involve

putting in same colored cells adjacent. This in turn

adds additional edge information to the trival 32

board edges. Since checker board gives least edge

info and is the easiest to solve, it is my contention

that with more edge information at hand, it can only

get easier to find the solution.

A closer look at why Checkerboard is easiest

Let’s see why the checkerboard is easy to solve,

and others are perceived ‘harder’:

- because fo its flexibility: there are greater

number of posible next moves at every

step due to it’s genrality => hence many

different permutations of possible

pieces-position , i.e. solutions

Having some edge already in place deprives us of

choice, but the constraints is what gives us less

possible options, thereby helping us select best

piece with more confidence and move towards a

solution quickly.

Having established this, what we now need is a way

to actually get possible options and a way to find out

what defines a good position among others.

Proposed Algorithm
Set of moves tried, and until board has no remaining

holes and no remaining pieces, or no moves

1. Define territory (Separate holes) by adjacent

same color cell edges.

2. Check if any holes have single piece solution,

and place them

3. See if the magic wand any of the holes

(practically done in the first step)

4. While pieces remaining:

a. Make a size progression for each hole by

cell count, wrt available pieces.

b. Look for the densest windows across

holes. Rank by edge/cell density.

c. Fit pieces to each hole, rank each

window-hole combination by:

i. edges matched and crookedness

heuristic of pieces.

4

ii. span (only small_wand, and

theoretically magic wand)

iii. Select the winner, but keep a set of

other next best moves

d. If no moves:

i. Try a different sized piece, according

to a different progression

ii. If still no moves, backtrack to parent

and try it's sibling

Before going into each step in detail, let’s introduce

a few techniques.

Techniques for Implementation

Grid representation

Patterns, solutions, and pieces can be represented

as matrices, with each cell carrying three pieces of

information: color, coordinates and edge information

(calculated later). This makes it easier to perform

comparisons between each piece with a particular

region of the board to place them, as well as rotating

the piece grids to check if they fit.

Edge scoring heuristic-based search

As multiple piece-placements (moves) may be valid

at any given point of the puzzle, we can define a

heuristic specifying the denser edge regions in a

pattern to be filled first, and another to score pieces

based on their 'crookedness'. Tetronominoes form a

majority, are chosen first wherever possible, leaving

the smallest pieces for the end.

Backtracking and Tree Pruning

As it is customary to solve packing puzzles with a

backtracking algorithm, a puzzle such as the

Kaleidoscope having different sized pieces has

many opportunities for tree pruning at earlier stages

to reach the solution quickly.

Detailed Stages
Selecting the piece set

Usually, red and black combination boards have an

even balance of 32 red and 32 black cells, which

implies that the red monomino is to be placed as is.

However, it can also be flipped to its black side to

create different patterns, which have a 31 red + 33

black count:

Fig 4.1: The Seal

Red Count = 31, Black Count = 33

Fig 4.2: The Red Monomino and its flip black side

While solving such a pattern, it is necessary to

confirm this at the very beginning, to define the

piece set with the suitable side of each piece in

general. This is even more relevant in patterns with

Blue and Yellow sides of the pieces, mentioned in

the ‘Future Improvements’ section.

Finding edges as Islands (holes) territory

As we know that finding edges in a pattern brings us

closer to the solution. We can look for same-colored

adjacent cells in order to find the initial non-border

edges. There are two ways to do this:

1. Fill algorithm​: Maintain an untraveled and

traveled cells list. Initially, all the cells are

untravelled. Randomly select a cell from

untravelled and add all its connecting cells

(up, down, left, right) to the traveled list. If

any of them have the same color as the

cell, an edge exists in that direction.

Repeat by selecting another cell.

5

Fig: Fill algorithm to find regions

2. Finding islands (efficient): Maintain a list

of islands. Scan the pattern row-by-row

one by one, and compare each cell with its

joining cells in the same row, as well as the

row before it to mark the edges. If they

don’t share their color, they are on the

same island. At the end of the parsing

check the number of island regions formed.

Fig: The efficient island approach

Successive island count: 1, 2, 3, 4

The next step is to explode dismantle the regions so

that we can focus and prioritize each closed-off

region separately.

Implementation detail: Each hole preserves its

relative offset from the whole board, it's most top-left

coordinate so that we can trace every piece offset

that is first calculated wrt to the region can be used

to calculate its absolute offset from the board.

Fig: Puzzles is its simplified form, regions each

revealing a new set of edges.

Targeting constrained areas first

Most constrained places, the ones with the most

edges, should be solved first. The smallest regions

are the most constrained, usually having a trivial

solution as a single piece, followed be areas in the

bigger holes having areas of high [edge density],

that can only possible house few pieces (The

algorithm to do this and edge density are covered in

the next section).

Fig: Constrained areas with most edges per area.

Triviality

In some cases, there are regions (holes) formed that

can be solved with a single piece. We'll call these

trivial solutions. These moves are non-negotiable.

As such they are placed at this stage and do not

form branches in the backtracking tree.

- trivial pieces (no branch)

6

Trivial solutions or without,

- octomino (best chance, but first branch)

This is also the stage to place the magic wand, as

only a few islands can have it. This is necessary, as

the octomino is the piece that has the most freedom,

and needs the most leeway. As subsequent stages

will decrease both, The start stage is the only one

that satisfies this requirement.

In general, larger pieces are preferred first. As this is

our first move, if there are multiple possible

positions, This would mark the first fork in our

backtracking tree.

Hole count progression

Hence, calc size progressions for all holes, not

accurate but still: we try to look at the cell count of

the hole and make an educated guess as to the

sizes of the pieces that will fit the hole. Acts as the

primary constraint, which is a reasonable guess at

the start and gets accurate towards the end

constraint.

For example, if the cell count is 17:

17 = 4 + 4 + 4 + (5)

However, in order to do this efficiently for all given

holes, we need to how many pieces of a given size

are available, in order to prioritize the ​biggest first​.

Let’s look at the count distributions for the remaining

pieces:

Considering magic wand out of the picture, we have

Tetrominoes (size: 4): 10

Triominoes (size: 3): 4

Domino: 1

Moniminos (size 2): 2

This sets some Goals: in general,

- 4 first,

- available pieces,

- try bigger before smaller

- corollary: 2 and 1 sizes are easy

to fit but very rare, so reserve use

for last

We start with tetrominoes until 8/6/5/3 cells left (7 is

just 4 + 3, where 3 = 3 or 3 = 2 + 1, and 4 is), after

which, there are multiple progressions possible,

5 = 4 + 1, 5 = 3 + 2

6 = 3 + 3, 6 = 4 + 2

8 = 4 + 4, 6 = 3 + 3 + 2

and we keep a provision to try each of them

separately if one doesn’t work out. This has to be

continuously tallied based on the hole state (as the

cell count changes), and available pieces, if every

sized piece of the progression is available. These

form the necessary conditions to decide the next

expected piece count while choosing a move.

Get next move

The repeating step after every move.

Consists of 2 or 3 best choices:

- Choosing the next hole, congested

- Choosing the next window

This depends on:

- overall density, densest window of all, but if a hole

is smaller complete it first

- that means windows across all holes by default,

but if some hole small then windows only to it

- some examples

- keep updating progression once done

The Sliding Window

To efficiently find potential candidate pieces that can

fit in a hole, we take the help of windowing.

Windowing involves moving over all the sides of a

7

hole and collecting mini piece-sized grids. Such a

window has characteristics like cell count, edge

count, and open edge count. A row has hole and

window pos, actual win, stats.

Window sizes

Just like the magic wand, if the small_wand is in

available pieces needs possible positions. Special

window 4x1. For all other pieces, the window sizes

is 3x2 can fit all of them.

[fig]: 3x2 window, 4x1 windows, and their rotated

versions as well

Fig 4.3: 2x3 and 3x2 windows

Window selection thresholds

As our goal is to target the most edges, we try to get

The small wand has to be placed in a long position,

that doesn’t cause it to jut out. In order to do that, it

should generally be placed flush against a border,

also having an end covered. Hence, 4x1 windows

have to satisfy a special constraint, touched on at

least one end, and at least one whole side i.e 5

edges

Implementation detail

Instead of capturing every window initially and

calculating its edge count, we can quickly find the

coord for the most edged windows.

3x2 Windows

We first make a grid mapping of all counts, then

map it over for counts for our window size. Grid, grid

with edge counts, and a grid with horizontal and

vertical gradients. Then we can select the ones with

the highest score.

4x1 Windows

Parse every row in the pattern to see if the row has

at least 4 cells. If it does, select the starting point, if

more that 4 select each of the start and end.

Selecting from the thresholded pieces by distribution

We select the highest edges count window to test

out which pieces fit them the best and measure the

match of each.

Turning windows to Moves

Each possible window is then evaluated or . In 3x2

windows, whether all if its cells can be filled by a

piece, there can more than one piece . Thus we

generate ​window piece pairs​. And give each a

score, based on

[fig]: 2-3 examples deciding a piece based on a 3x2

hole

This is also the part where the next expected piece

count is considered. A piece is only selected if it

matches the next expected count.

Fig: A hole example with 10 cells, demonstrating 4 +

(3 + 3) rather than 4 + (4 + 2)

In this example, the following moves are deduced.

8

Scoring moves: Edge Matches and other factors

Based on the cells covered and number of edges

the window has, and the cells, the bestness of a

move (a piece fill) is defined by:

- edges overlap between the piece and

window

- Rareness/ Crookedness / Trouble-to-fit of

the piece

Edge Overlap

Matched edges count + no_of_total window edges

Matched edge count is the number of those piece

edges (greater set) that are also window edges.

Bonus deviation heuristic / reservation

Pieces like the Z and T have more trouble to fit and

hence are assigned an additional score for their

crookedness, for them to be picked up faster and

filled in as soon as possible. In case of examples of

tied scores, or cases where there is only a slight

difference, the crooked pieces will be considered

due to their bonus, just enough score to break tie or

one less edge.

Hence, the final score is given by,

Score = Matched edges + crooked piece

bonus

Other factors:

Ideally, the move should not break the hole into two

parts. One exception to this would be that the

resulting two holes have a <3 sized hole that is part

of the size progression of the hole and present in its

available pieces.

Making a move

After considering the scores, the ​top 3 choices are

then chosen in order to be the forks for this stage of

the game, and the first piece is chosen for the

current move. The other pieces will be used to back

track later. Current hole state, selected piece forks,

resultant state from first piece are calculated.

Implementation detail: Placing a piece

In order to make a move, we have to merge the

selected piece with the hole at its selected coord.

Once the piece is placed, the new hole is created

by:

- Nulling the piece cells

- Establishing edges at the piece open

edges

No moves available

There are a couple of steps to follow:

1. Change piece size progression:

2. If no progressions left, Backtrack to

previous moves and select the next best

sibling.

3. If no siblings left, back track to parent and

check its siblings

4. Repeat step 3

Once we have made a move, the get next move

cycle is repeated.

Backtracking

While making a move, we also save the next best

pieces at every stage for later. These form the

nodes in a backtracking tree. At any given stage

where there are no moves even after trying a

different count progression, the last piece is

backtracked to first try its sibling and proceed to its

parent and continue the search if it fails.

Practical Walkthroughs

9

Fig 4.4: The Car Pattern solution: Move progression with edge scores and backtracking

Fig 4.4: The ‘12’ Pattern solution: move progression

10

Fig: The No Single Squares solution: Move progression with edge scores and backtracking

Implementation, Performance Tests

The previous page shows two different solution

progressions for the Car and 12 patterns. The Car

pattern has a higher degree of initial fragmentation

into holes, however it still requires some

backtracking in the final stage to fit in the triomino.

The 12 board on the other hand, despite having less

number of holes, is able to find a fitting piece at

every step without having to backtrack at any point.

Future Improvements

We have considered piece possible position based

judgement only in the case of small wand. However,

this will become highly important in the case of

flipped blue and yellow pieces, because these piece

side are less homogenous due to two colors taking

turns, and there are few possible places for each

piece to go.

Combining both types of branching, we can come

up with a robust approach to solve black and red,

blue and yellow, and even hybrid Kaleidoscope

boards.

Conclusion

The algorithm makes use of finding islands, edge

matching, piece size and crookedness heuristics

and backtracking to find the best fitting pieces. We

have seen that performing every possible technique

11

to prune the backtracking tree leads to a faster

solution, and achieves performance quite better

traditional edge matching, taking advantage of the

unique nature of the Kaleidoscope puzzle.

References

● Edge-matching:
https://erikdemaine.org/papers/Jigsaw_GC/paper.pdf

● Lew Baxter. Polyomino puzzles are NP-complete.
Message on Eternity Yahoo! Group.
http://groups.yahoo.com/group/eternity/message/3988

● Knuth Dancing Links:
https://www-cs-faculty.stanford.edu/~knuth/preprints.ht
ml​ (P159)

● 3Backtracking: (Something) James R. Bitner and
Edward M. Reingold. Backtrack programming
techniques.Communications of the ACM,
18(11):651–656, 1975.

● Superforms:
http://puzzlezapper.com/aom/mathrec/polycover.html

● Polyform: ​https://en.wikipedia.org/wiki/Polyform

12

https://erikdemaine.org/papers/Jigsaw_GC/paper.pdf
http://groups.yahoo.com/group/eternity/message/3988
https://www-cs-faculty.stanford.edu/~knuth/preprints.html
https://www-cs-faculty.stanford.edu/~knuth/preprints.html
http://puzzlezapper.com/aom/mathrec/polycover.html
https://en.wikipedia.org/wiki/Polyform

