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Abstract 
 

We present an efficient way to solve a color-constrained assorted multi-sized polyomino piece packing puzzle               

(named the Dr. Wood Kaleidoscope Classic): A 8 x 8 packing puzzle with numerous possible packings, but which                  

enables wants a specific pattern. arranging a packing that matches a given pattern. 

The python implementation of the algorithm can be found at GitHub: ​www.github.com/pratu16x7/kaleidoscope 
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Introduction 
 

Packing Puzzles 

Packing puzzles have intrigued folk through      

decades, both to recreational mathematicians and      

programming enthusiasts. The Pentomino packing     

puzzle is the most popular, which requires packing        

all the 12 pentomino shapes into different sized        

rectangles. They are a special kind of polyform;        

Pentominoes is an example of packing with       

polyominoes, the simplest polyform packing,     

involving packing together a group of polyominoes       

which may be same or different in size. 

 

Fig 1.0: A solution to the Pentominoes puzzle  

 

The Kaleidoscope Classic 

The puzzle consists of an 8x8 board, over which 18          

polyomino pieces are to be arranged: 1 octomino,        

10 tetrominoes, 4 triominoes, 1 domino, 2       

monominoes. Each piece is colored on both sides        

and can be chosen to be placed on either. No two           

pieces are alike. A pattern is a particular        

arrangement of the pieces, placed with either side        

chosen, on the 64-celled board, shown without the        

piece placement. A solution to the pattern is a board          

that shows a possible packing that the pieces can         

be arranged for the pattern. 

As the pieces set is built to be easy to pack to fit the              

board in many ways, the challenge is to pack them          

in specific ways. There are over 200 patterns        

possible, each having as many as millions or as little          

as a single solution. It is Dr Wood’s first widespread          

creation and a winner of the Puzzle of the Year by           

the Australian Games Association in 2004. 
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Fig 1.1: The Kaleidoscope Classic: The 8 x 8 board and 18 polyomino pieces. No two pieces are alike. 

 

 

 

 

                       

 

                        

 

Fig 1.2: Some puzzle patterns and their possible solutions  

2 



 

Problem definition 
 

“​For a given pattern of an 8x8 grid, and the given 18            

pieces colored both sides, find a placement of each         

of the pieces such that the pattern is satisfied.” 

Terms used: 

● Board 

● Pattern (any grid) 

● Cell edge info 

● Piece 

● Y, X coordinate system of a board 

● A solution move: piece, orientation, coord 

We propose an algorithm to account for the        

difference in size and colors of the pieces and take          

advantage of them to make a typical edge matching         

algorithm fast. 

Blue and Yellow sides are beyond the scope for this          

analysis but are presented in the ‘Future       

Improvements’ section. 

 

Observations & Motivation 
 

The context: Perceived Human difficulty 

 

Fig: The checkerboard, the easiest pattern to solve, 

with billions of solutions 

Conventionally, the checkerboard pattern, with     

alternating colors is considered the easiest to solve.  

Partly because the board pieces have Conversely,       

any board that is not the checkerboard is considered         

harder: the more features a board has, the harder it          

is to solve. However, we present some observations        

that show that this is not the case. 

 

The solution as an increase in cell edges 

Looking closely at a solution of a given pattern, we          

observe that the placements of all the 18 pieces         

give us additional information apart from the cell        

colors: edges. In the same vein, a problem pattern is          

represented with zero edges, and with every piece        

placement, we add to the edge information and        

move closer to the solution (maximum edges). 

 

     

Zero edges                      65 edges 

 

Fig: Increase in edges from pattern to solution 

(excluding the 32 trivial border edges) 

 

Trivial edges 

In any pattern, the borders of the board are implicitly          

edges, which serve as a starting point to place the          

pieces. 

 

     

Fig: . The 32 implicit edges in any pattern  

 

Adding to Trivial edges (color adjacency edges) 

We observe that all pieces have alternating colors,        

and hence continuous color regions (same-colored      

adjacent cells) indicate the presence of a divide,        

across which two pieces have been placed. 

   

Fig:  (small window) implied edges from same 

colored adjacent cells  
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Fig: 1. (small window) implied edges from same 

colored adjacent cells  

 

Checkerboard as a base pattern 

And any attempt to tweak the checkerboard pattern        

introduces ​some ​secondary adjacent color edges. 

 

         

        

 

[fig]Row 1: Incr in features,Row 2: Increase in edges  

Fig 2.1: Edge info in any board different from 

checkerboard pattern  

 

And now combining all of the above, the following         

follows, 

1. a solution is progression to more edge info 

2. The checkerboard is easiest to solve      

(billions of solutions) 

3. In any pattern that is not a checkerboard,        

there is bound to be some non-trivial edge        

info 

=> it should be relatively easier to solve with built in           

info. Or at the very least, there should be a way to            

do it. 

The least featureful checkerboard, easiest to solve.       

Any intent to make a different pattern will involve         

putting in same colored cells adjacent. This in turn         

adds additional edge information to the trival 32        

board edges. Since checker board gives least edge        

info and is the easiest to solve, it is my contention           

that with more edge information at hand, it can only          

get easier to find the solution. 

 

A closer look at why Checkerboard is easiest 

Let’s see why the checkerboard is easy to solve,         

and others are perceived ‘harder’: 

- because fo its flexibility: there are greater       

number of posible next moves at every       

step due to it’s genrality => hence many        

different permutations of possible    

pieces-position , i.e. solutions 

 

Having some edge already in place deprives us of         

choice, but the constraints is what gives us less         

possible options, thereby helping us select best       

piece with more confidence and move towards a        

solution quickly. 

 

Having established this, what we now need is a way          

to actually get possible options and a way to find out           

what defines a good position among others. 

 

Proposed Algorithm 
Set of moves tried, and until board has no remaining          

holes and no remaining pieces, or no moves 

 

1. Define territory (Separate holes) by adjacent      

same color cell edges. 

2. Check if any holes have single piece solution,        

and place them 

3. See if the magic wand any of the holes         

(practically done in the first step) 

4. While pieces remaining: 

a. Make a size progression for each hole by        

cell count, wrt available pieces. 

b. Look for the densest windows across      

holes. Rank by edge/cell density. 

c. Fit pieces to each hole, rank each       

window-hole combination by: 

i. edges matched and crookedness    

heuristic of pieces. 
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ii. span (only small_wand, and    

theoretically magic wand) 

iii. Select the winner, but keep a set of        

other next best moves  

d. If no moves: 

i. Try a different sized piece, according      

to a different progression 

ii. If still no moves, backtrack to parent       

and try it's sibling 

 

Before going into each step in detail, let’s introduce         

a few techniques. 

 

Techniques for Implementation 

Grid representation 

Patterns, solutions, and pieces can be represented       

as matrices, with each cell carrying three pieces of         

information: color, coordinates and edge information      

(calculated later). This makes it easier to perform        

comparisons between each piece with a particular       

region of the board to place them, as well as rotating           

the piece grids to check if they fit. 

 

Edge scoring heuristic-based search 

As multiple piece-placements (moves) may be valid       

at any given point of the puzzle, we can define a           

heuristic specifying the denser edge regions in a        

pattern to be filled first, and another to score pieces          

based on their 'crookedness'. Tetronominoes form a       

majority, are chosen first wherever possible, leaving       

the smallest pieces for the end. 

 

Backtracking and Tree Pruning 

As it is customary to solve packing puzzles with a          

backtracking algorithm, a puzzle such as the       

Kaleidoscope having different sized pieces has      

many opportunities for tree pruning at earlier stages        

to reach the solution quickly. 

 

 

 

Detailed Stages 
Selecting the piece set 

Usually, red and black combination boards have an        

even balance of 32 red and 32 black cells, which          

implies that the red monomino is to be placed as is.           

However, it can also be flipped to its black side to           

create different patterns, which have a 31 red + 33          

black count: 

 

 

Fig 4.1: The Seal 

Red Count = 31, Black Count = 33 

 

 

Fig 4.2: The Red Monomino and its flip black side 

 

While solving such a pattern, it is necessary to         

confirm this at the very beginning, to define the         

piece set with the suitable side of each piece in          

general. This is even more relevant in patterns with         

Blue and Yellow sides of the pieces, mentioned in         

the ‘Future Improvements’ section. 

 

Finding edges as Islands (holes) territory 

As we know that finding edges in a pattern brings us           

closer to the solution. We can look for same-colored         

adjacent cells in order to find the initial non-border         

edges.  There are two ways to do this: 

1. Fill algorithm​: Maintain an untraveled and      

traveled cells list. Initially, all the cells are        

untravelled. Randomly select a cell from      

untravelled and add all its connecting cells       

(up, down, left, right) to the traveled list. If         

any of them have the same color as the         

cell, an edge exists in that direction.       

Repeat by selecting another cell. 
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Fig: Fill algorithm to find regions 

 

2. Finding islands (efficient): Maintain a list      

of islands. Scan the pattern row-by-row      

one by one, and compare each cell with its         

joining cells in the same row, as well as the          

row before it to mark the edges. If they         

don’t share their color, they are on the        

same island. At the end of the parsing        

check the number of island regions formed. 

   

   

Fig: The efficient island approach 

Successive island count: 1, 2, 3, 4 

 

The next step is to explode dismantle the regions so          

that we can focus and prioritize each closed-off        

region separately. 

 

Implementation detail: Each hole preserves its      

relative offset from the whole board, it's most top-left         

coordinate so that we can trace every piece offset         

that is first calculated wrt to the region can be used           

to calculate its absolute offset from the board. 

 

 

Fig: Puzzles is its simplified form, regions each 

revealing a new set of edges. 

 

Targeting constrained areas first 

Most constrained places, the ones with the most        

edges, should be solved first. The smallest regions        

are the most constrained, usually having a trivial        

solution as a single piece, followed be areas in the          

bigger holes having areas of high [edge density],        

that can only possible house few pieces (The        

algorithm to do this and edge density are covered in          

the next section). 

 

Fig: Constrained areas with most edges per area. 

 

Triviality 

In some cases, there are regions (holes) formed that         

can be solved with a single piece. We'll call these          

trivial solutions. These moves are non-negotiable.      

As such they are placed at this stage and do not           

form branches in the backtracking tree. 

- trivial pieces (no branch) 
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Trivial solutions or without, 

- octomino (best chance, but first branch) 

This is also the stage to place the magic wand, as           

only a few islands can have it. This is necessary, as           

the octomino is the piece that has the most freedom,          

and needs the most leeway. As subsequent stages        

will decrease both, The start stage is the only one          

that satisfies this requirement. 

 

 

In general, larger pieces are preferred first. As this is          

our first move, if there are multiple possible        

positions, This would mark the first fork in our         

backtracking tree. 

 

Hole count progression 

Hence, calc size progressions for all holes, not        

accurate but still: we try to look at the cell count of            

the hole and make an educated guess as to the          

sizes of the pieces that will fit the hole. Acts as the            

primary constraint, which is a reasonable guess at        

the start and gets accurate towards the end        

constraint.  

 

For example, if the cell count is 17: 

17 = 4 + 4 + 4 + (5)  

 

However, in order to do this efficiently for all given          

holes, we need to how many pieces of a given size           

are available, in order to prioritize the ​biggest first​.         

Let’s look at the count distributions for the remaining         

pieces: 

 

Considering magic wand out of the picture, we have 

Tetrominoes (size: 4): 10 

Triominoes (size: 3): 4 

Domino: 1 

Moniminos (size 2): 2  

This sets some Goals: in general, 

- 4 first,  

- available pieces,  

- try bigger before smaller 

- corollary: 2 and 1 sizes are easy        

to fit but very rare, so reserve use        

for last 

 

We start with tetrominoes until 8/6/5/3 cells left (7 is          

just 4 + 3, where 3 = 3 or 3 = 2 + 1, and 4 is ), after                   

which, there are multiple progressions possible,  

5 = 4 + 1, 5 = 3 + 2 

6 = 3 + 3, 6 = 4 + 2 

8 = 4 + 4, 6 = 3 + 3 + 2 

and we keep a provision to try each of them          

separately if one doesn’t work out. This has to be          

continuously tallied based on the hole state (as the         

cell count changes), and available pieces, if every        

sized piece of the progression is available. These        

form the necessary conditions to decide the next        

expected piece count while choosing a move. 

 

Get next move 

The repeating step after every move. 

Consists of 2 or 3 best choices: 

- Choosing the next hole, congested 

- Choosing the next window  

This depends on: 

- overall density, densest window of all, but if a hole           

is smaller complete it first 

- that means windows across all holes by default,         

but if some hole small then windows only to it 

- some examples 

- keep updating progression once done 

 

The Sliding Window 

To efficiently find potential candidate pieces that can        

fit in a hole, we take the help of windowing.          

Windowing involves moving over all the sides of a         
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hole and collecting mini piece-sized grids. Such a        

window has characteristics like cell count, edge       

count, and open edge count. A row has hole and          

window pos, actual win, stats. 

 

Window sizes 

Just like the magic wand, if the small_wand is in          

available pieces needs possible positions. Special      

window 4x1. For all other pieces, the window sizes         

is 3x2 can fit all of them. 

 

[fig]: 3x2 window, 4x1 windows, and their rotated        

versions as well 

 

Fig 4.3: 2x3 and 3x2 windows 

 

Window selection thresholds 

As our goal is to target the most edges, we try to get  

The small wand has to be placed in a long position,           

that doesn’t cause it to jut out. In order to do that, it             

should generally be placed flush against a border,        

also having an end covered. Hence, 4x1 windows        

have to satisfy a special constraint, touched on at         

least one end, and at least one whole side i.e 5           

edges 

 

Implementation detail 

Instead of capturing every window initially and       

calculating its edge count, we can quickly find the         

coord for the most edged windows. 

 

3x2 Windows 

We first make a grid mapping of all counts, then          

map it over for counts for our window size. Grid, grid           

with edge counts, and a grid with horizontal and         

vertical gradients. Then we can select the ones with         

the highest score.  

 

4x1 Windows 

Parse every row in the pattern to see if the row has            

at least 4 cells. If it does, select the starting point, if            

more that 4 select each of the start and end. 

 

Selecting from the thresholded pieces by distribution 

We select the highest edges count window to test         

out which pieces fit them the best and measure the          

match of each. 

 

Turning windows to Moves 

Each possible window is then evaluated or . In 3x2          

windows, whether all if its cells can be filled by a           

piece, there can more than one piece . Thus we          

generate ​window piece pairs​. And give each a        

score, based on  

[fig]: 2-3 examples deciding a piece based on a 3x2          

hole 

 

This is also the part where the next expected piece          

count is considered. A piece is only selected if it          

matches the next expected count. 

 

Fig: A hole example with 10 cells, demonstrating 4 + 

(3 + 3) rather than 4 + (4 + 2) 

 

In this example, the following moves are deduced. 
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Scoring moves: Edge Matches and other factors 

Based on the cells covered and number of edges         

the window has, and the cells, the bestness of a          

move (a piece fill) is defined by: 

- edges overlap between the piece and      

window 

- Rareness/ Crookedness / Trouble-to-fit of     

the piece 

Edge Overlap 

Matched edges count  + no_of_total window edges  

Matched edge count is the number of those piece         

edges (greater set) that are also window edges. 

 

Bonus deviation heuristic / reservation 

Pieces like the Z and T have more trouble to fit and            

hence are assigned an additional score for their        

crookedness, for them to be picked up faster and         

filled in as soon as possible. In case of examples of           

tied scores, or cases where there is only a slight          

difference, the crooked pieces will be considered       

due to their bonus, just enough score to break tie or           

one less edge. 

 

Hence, the final score is given by, 

Score = Matched edges + crooked piece       

bonus  

 

Other factors: 

Ideally, the move should not break the hole into two          

parts. One exception to this would be that the         

resulting two holes have a <3 sized hole that is part           

of the size progression of the hole and present in its           

available pieces.  

 

Making a move 

After considering the scores, the ​top 3 choices are         

then chosen in order to be the forks for this stage of            

the game, and the first piece is chosen for the          

current move. The other pieces will be used to back          

track later. Current hole state, selected piece forks,        

resultant state from first piece are calculated. 

 

Implementation detail: Placing a piece 

In order to make a move, we have to merge the           

selected piece with the hole at its selected coord.         

Once the piece is placed, the new hole is created          

by: 

- Nulling the piece cells 

- Establishing edges at the piece open      

edges 

 

No moves available 

There are a couple of steps to follow: 

1. Change piece size progression: 

2. If no progressions left, Backtrack to      

previous moves and select the next best       

sibling. 

3. If no siblings left, back track to parent and         

check its siblings 

4. Repeat step 3 

 

Once we have made a move, the get next move          

cycle is repeated. 

 

Backtracking 

While making a move, we also save the next best          

pieces at every stage for later. These form the         

nodes in a backtracking tree. At any given stage         

where there are no moves even after trying a         

different count progression, the last piece is       

backtracked to first try its sibling and proceed to its          

parent and continue the search if it fails. 

 

 

Practical Walkthroughs  
 

 

 

9 



 

 

Fig 4.4: The Car Pattern solution: Move progression with edge scores and backtracking 

 

       

 

Fig 4.4: The ‘12’ Pattern solution: move progression 
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Fig: The No Single Squares solution: Move progression with edge scores and backtracking 

 

 

Implementation, Performance Tests 
 

The previous page shows two different solution       

progressions for the Car and 12 patterns. The Car         

pattern has a higher degree of initial fragmentation        

into holes, however it still requires some       

backtracking in the final stage to fit in the triomino.          

The 12 board on the other hand, despite having less          

number of holes, is able to find a fitting piece at           

every step without having to backtrack at any point. 

 
Future Improvements 
 

We have considered piece possible position based       

judgement only in the case of small wand. However,         

this will become highly important in the case of         

flipped blue and yellow pieces, because these piece        

side are less homogenous due to two colors taking         

turns, and there are few possible places for each         

piece to go.  

 

 

 

Combining both types of branching, we can come 

up with a robust approach to solve black and red, 

blue and yellow, and even hybrid Kaleidoscope 

boards. 

Conclusion 
 

The algorithm makes use of finding islands, edge        

matching, piece size and crookedness heuristics      

and backtracking to find the best fitting pieces. We         

have seen that performing every possible technique       
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to prune the backtracking tree leads to a faster         

solution, and achieves performance quite better      

traditional edge matching, taking advantage of the       

unique nature of the Kaleidoscope puzzle. 

 

References 
 

● Edge-matching: 
https://erikdemaine.org/papers/Jigsaw_GC/paper.pdf 

● Lew Baxter. Polyomino puzzles are NP-complete. 
Message on Eternity Yahoo! Group. 
http://groups.yahoo.com/group/eternity/message/3988 

● Knuth Dancing Links: 
https://www-cs-faculty.stanford.edu/~knuth/preprints.ht
ml​ (P159) 

● 3Backtracking: (Something) James R. Bitner and 
Edward M. Reingold. Backtrack programming 
techniques.Communications of the ACM, 
18(11):651–656, 1975. 

● Superforms: 
http://puzzlezapper.com/aom/mathrec/polycover.html 

● Polyform: ​https://en.wikipedia.org/wiki/Polyform 

12 

https://erikdemaine.org/papers/Jigsaw_GC/paper.pdf
http://groups.yahoo.com/group/eternity/message/3988
https://www-cs-faculty.stanford.edu/~knuth/preprints.html
https://www-cs-faculty.stanford.edu/~knuth/preprints.html
http://puzzlezapper.com/aom/mathrec/polycover.html
https://en.wikipedia.org/wiki/Polyform

